Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Drug Deliv Transl Res ; 12(7): 1605-1615, 2022 07.
Article in English | MEDLINE | ID: covidwho-1427438

ABSTRACT

COVID-19 pandemic situation has affected millions of people with tens of thousands of deaths worldwide. Despite all efforts for finding drugs or vaccines, the key role for the survival of patients is still related to the immune system. Therefore, improving the efficacy and the functionality of the immune system of COVID-19 patients is very crucial. The potential new, non-invasive, FDA-approved biophysical technology that could be considered in this regard is tumor treating fields (TTFields) based on an alternating electric field has great biological effects. TTFields have significant effects in improving the functionality of dendritic cell, and cytotoxic T-cells, and these cells have a major role in defense against viral infection. Hence, applying TTFields could help COVID-19 patients against infection. Additionally, TTFields can reduce viral genomic replication, by reducing the expressions of some of the vital members of DNA replication complex genes from the minichromosome maintenance family (MCMs). These genes not only are involved in DNA replication but it has also been proven that they have a crucial role in viral replication. Also, TTFields suppress the formation of the network of tunneling nanotubes (TNTs) which is knows as filamentous (F)-actin-rich tubular structures. TNTs have a critical role in promoting the spread of viruses through improving viral entry and acting as a protective agent for viral components from immune cells and even pharmaceuticals. Moreover, TTFields enhance autophagy which leads to apoptosis of virally infected cells. Thus, it can be speculated that using TTFields may prove to be a promising approach as a subsidiary treatment of COVID-19.


Subject(s)
COVID-19 , Electric Stimulation Therapy , Neoplasms , COVID-19/therapy , Humans , Neoplasms/therapy , Pandemics , Technology
2.
Immunopharmacol Immunotoxicol ; 43(3): 259-264, 2021 Jun.
Article in English | MEDLINE | ID: covidwho-1238100

ABSTRACT

Coronavirus disease 2019 (COVID-19) is associated with irreversible effects on vital organs, especially the respiratory and cardiac systems. While the immune system plays a key role in the survival of patients to viral infections, in COVID-19, there is a hyperinflammatory immune response evoked by all the immune cells, such as neutrophils, monocytes, and includes release of various cytokines, resulting in an exaggerated immune response, named cytokine storm. This severe, dysregulated immune response causes multi-organ damage, which eventually leads to high mortality. One of the most important components of hypersensitivity is immunoglobulin E (IgE), which plays a major role in susceptibility to respiratory infections and can lead to the activation of mast cells. There is also a negative association between IgE and IFN-α, which can reduce Toll-like receptor (TLR) nine receptor expression and TLR-7 signaling to disrupt IFN production. Moreover, anti-IgE drugs such as omalizumab reduces the severity and duration of COVID-19. In addition to its anti-IgE effect, omalizumab inhibits inflammatory cells such as neutrophils. Hence, blockade of IgE may have clinical utility as an immunotherapy for COVID-19.


Subject(s)
COVID-19 Drug Treatment , COVID-19/immunology , Omalizumab/therapeutic use , Signal Transduction/drug effects , Humans , Immunoglobulin E/immunology , Interferon-alpha/immunology , Omalizumab/immunology , Signal Transduction/immunology , Toll-Like Receptor 7/immunology
SELECTION OF CITATIONS
SEARCH DETAIL